On Hierarchical Extensions of Large-Scale 4-regular Grid Network Structures

نویسندگان

  • Jens Myrup Pedersen
  • Ahmed Patel
  • Thomas Phillip Knudsen
  • Ole Brun Madsen
چکیده

It is studied how the introduction of ordered hierarchies in 4-regular grid network structures decreases distances remarkably, while at the same time allowing for simple topological routing schemes. Both meshes and tori are considered; In both cases non-hierarchical structures have powerlaw dependencies between the number of nodes and the distances in the structures. The perfect square mesh is introduced for hierarchies, and it is shown that applying ordered hierarchies in this way results in logarithmic dependencies between the number of nodes and the distances, resulting in better scaling structures. For example, in a mesh of 391876 nodes the average distance is reduced from 417.33 to 17.32 by adding hierarchical lines. This is gained by increasing the number of lines by 4.20% compared to the non-hierarchical structure. A similar hierarchical extension of the torus structure also results in logarithmic dependencies, the relative difference between performance of mesh and torus structures being less significant than for nonhierarchical structures, especially for large structures. The skew and extended meshes are introduced as variants of the perfect square mesh and their performances studied, and it is shown that while they allow for more flexibility in design and construction of structures supporting topological routing, their performances are comparable to the performance of the perfect square mesh. Finally suggestions for further research within the field is given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying 4-regular grid structures in large-scale access networks

4-Regular grid structures have been used in multiprocessor systems for decades due to a number of nice properties with regard to routing, protection, and restoration, together with a straightforward planar layout. These qualities are to an increasing extent demanded also in largescale access networks, but concerning protection and restoration these demands have been met only to a limited extent...

متن کامل

Weighted-HR: An Improved Hierarchical Grid Resource Discovery

Grid computing environments include heterogeneous resources shared by a large number of computers to handle the data and process intensive applications. In these environments, the required resources must be accessible for Grid applications on demand, which makes the resource discovery as a critical service. In recent years, various techniques are proposed to index and discover the Grid resource...

متن کامل

A note on semi-regular locales

Semi-regular locales are extensions of the classical semiregular spaces. We investigate the conditions such that semi-regularization is a functor. We also investigate the conditions such that semi-regularization is a reflection or coreflection.

متن کامل

Optimising multicast structures for grid computing

This paper introduces a flexible new method of constructing hierarchical multicast structures suitable for supporting large-scale GRID applications. Hierarchical multicast trees are constructed by repeated application of clustering algorithms that partition the members of a large application community to form a layered hierarchy of clusters of users. The hierarchies are examples of application ...

متن کامل

COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004